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Two-Fluid Modeling Versus Mechanistic Approach 
and Lift Effects in Bubbly Sheared Flows 1 
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The behavior of bubbles in a shear flow is experimentally studied. The lift force 
experienced by a single bubble in constant shear is determined. It proves to be 
roughly equal to a half of the virtual mass coefficient up to Reynolds numbers 
of the order of 2000. Besides, the void--migration taking place inside a bubbly 
boundary layer on a fiat plate is studied and shown to be associated with an 
actual lateral deflection of the bubbles only under certain conditions. Finally, 
the link between the lagrangian description of the motion and the two-fluid 
model is qualitatively discussed. 
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1. I N T R O D U C T I O N  

There  are two vast ly different bu t  equal ly  genera l  and  ma themat i ca l ly  exact  
pictures  of a d ispersed two-phase  flow of  N e w t o n i a n  fluids: 

(i) that  of the two or iginal  fluids exchanging m o m e n t u m  at  the 
in te r faces - - the i r  mo t ions  are governed  by  the Nav ie r  Stokes 
equat ions ;  and  

(ii) tha t  of two equivalent  ficti t ious coexis t ing phases  whose momen-  
tum in te rac t ion  is vo lumet r ica l ly  d is t r ibuted ,  as a result  of the 
ensemble  averaging  pe r fo rmed  when der iving (ii) f rom (i). 

The  microscale description (i) is, of course,  to ta l ly  impract ical .  The 
two-fluid description (ii), on the o ther  hand,  is much  more  t rac tab le  if the 
governing  set of equa t ions  can be closed, i.e., if the u n k n o w n  terms, a m o n g  

Paper dedicated to Professor Joseph Kestin. 
2 Laboratoire de M6chanique des Fluides et d'Acoustique, U.A. CNRS 263, l~cole Centrale de 

Lyon, BP 163, 69131 Ecully Cedex, France. 

661 

0195-928X/93/0700-0661507.00/0 �9 1993 Plenum Publishing Corporation 



662 Bataillc and Lance 

which are the momentum interaction terms, can be properly modeled. 
Loosely speaking, the latter description is widely used by engineers who 
need numerical codes, since it provides a "simple" and systematic treatment 
of a wide variety of configurations, sometimes at the expense of physical 
relevance. In order to avoid such shortcomings, the academic world very 
often will go back to some highly idealized version of the original 
microscale flow, hoping that such a "mechanistic approach" will provide a 
good closure law for the momentum interaction, thus nicely closing the gap 
between the real and averaged descriptions (i) and (ii)--obviously at the 
expense of generality. 

One way of achieving this is to resort to an intermediate lagrangian 
description, which consists in tracking each individual inclusion of mass m i 

and applying Newton's law to its center of mass whose velocity, initial, 
and current positions with respect to a given frame of reference are, 
respectively, denoted Vi, d~, and )(~(t): 

mi ~ (ai,  t) = f f  i(ai, l) (1) 

However rigorous Eq. (1) might look, it will be physically realistic only if 
the inclusions are small enough, compared to some typical length scale and 
if the hydrodynamic force Fi exerted on it by the continuous phase can be 
reasonably well modeled--which implies, at least, an approximate integra- 
tion of the local and instantaneous flow equations, in its vicinity. Even- 
tually, the constitutive equation required for the momentum interaction 
terms appearing in the two-fluid model will be a mere transposition to the 
average flows of the local and instantaneous form of ff'i. That such an 
approach is not always consistent, has been pointed out by Simonin I-1 ] 
and recently discussed rigorously for slightly nonuniform suspensions by 
Lhuillier I-2]. 

In what follows, the authors will illustrate some of these difficulties 
using the experimental and numerical results recently obtained by several 
coworkers or former students (Mari6, Naciri, Moursali, and Petersen) as 
they were studying lift effects experienced by air bubbles in shear flows and 
the void migration occurring in a bubbly turbulent boundary layer on a 
vertical flat plate. 

2. VOID MIGRATION IN A B O U N D A R Y  LAYER A N D  
DEFLECTION OF BUBBLES TOWARD THE WALL 

According to the foregoing, there are two complementary ways of 
investigating the void distribution inside a turbulent boundary layer 
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developing on a flat plate immersed in a uniform vertical upward bubbly 
flow. The first one, which corresponds to the two-fluid model viewpoint, 
consists in the determination of the local void fraction; the second one, in 
keeping with the Lagrangian viewpoint, consists in the tracking of the 
individual bubbles. Such a program was achieved and partly reported by 
Moursali et al. [3]  using the experimental setup shown in Fig. 1. The 
detailed description of the hydrodynamic tunnel is given by Lance and 
Bataille [4]. The upstream liquid mean velocity UL and void fraction c~ 
were uniform, while the mean bubble diameter DB was approximately 
constant ( ~ 4  ram). The void fraction and the mean number of bubbles 
passing through a given point per unit time--hereafter called bubble 
frequency FB--were measured with an optical probe and the visualization 
of the motion of the bubbles was performed with a high-speed videocamera 
(200 frames/s). 
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Fig. 1. Sketch of the experimental setup. 
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Typical void fraction profiles at a given representative station 
(X= lm) are shown in Fig. 2 for three upstream void fractions. The void 
fraction exhibits a sharp relative or absolute maximum at a distance of the 
order of the mean radius of the bubbles and asymptotically recovers its free 
stream value. The void peaking phenomenon observed here in a com- 
paratively simple situation is not surprising in view of the findings of a 
number of authors dealing with upward pipe flow [5]. One may wonder, 
however, whether the sharp increase in ~ at the wall should be associated 
with an increase in the bubble frequency FB and therefore with an actual 
void migration or with the deceleration of the bubbles which takes place at 
the wall. Indeed, the void fraction is of the form 

FBDB 
~: - -  (2) 

UB 

where UB is the average velocity of the bubbles. As a matter of fact, the 
evolution of the bubble frequency at the peak FB•, as a function of its free 
stream value FBE (see Fig. 3), clearly indicates that void migration does not 
systematically occur: no net statistical deflection of the bubbles takes place, 
for example, at relatively high values of the void fraction. 

The same conclusions can be drawn qualitatively from inspection of 
the videofilms, which show that a significant number of bubbles undergo a 
violent deflection toward the wall, depending on the operating conditions. 
The same cinematographic evidence also suggests that it is mainly when 
the bubbles are small [Da<3 .5mm]  that they migrate to the wall, 
whereas they are hardly deflected when they are larger. That the diameter 
should play such a role is not totally unexpected since the deflection of a 
given bubble in a highly sheared turbulent flow can be controlled only by 
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Fig. 2. Void fraction profiles at X =  lm  (U L = 1 m - s  1). 
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its deformation and associated wake modification and by its interaction 
with the surrounding turbulent structures. 

The foregoing experimental findings raise the following question: Can 
the lift force exerted on a single bubble in a constant shear flow account for 
the observed migration? 

3. LIFT COEFFICIENT OF AN ISOLATED MILLIMETRIC BUBBLE 
IN A SHEAR FLOW 

In order to determine the lift coefficient CL of a single millimetric 
bubble in a constant shear flow, a small volume of air is injected into a 
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horizontal circular cyclinder containing distilled water and rotating 
uniformly about its axis at a rate co. It eventually reaches an equilibrium 
position defined by its polar coordinates r and 0, under the action of the 
buoyancy force and the lift, drag, and virtual mass forces associated with 
the shear flow generated (Fig. 4). Using the equation proposed by Auton 
et al. [6] for the motion of a bubble, it is straightforward to show that 
equilibrium requires that 

2CL - C V M  = 1 - -  ( g / ( , o  2 )  - -  
sin 0 

(3) 
r 

where CVM stands for the vitual mass coefficient. Figure 5 shows that 
CL ~ 5CvM for Reynolds numbers ranging from 10 to 2000 [7, 8]. 

4. COMPARISON BETWEEN NUMERICAL ESTIMATES AND 
EXPERIMENTAL DATA 

The flat plate problem was solved numerically using a code described 
elsewhere [9, 10], based on the two-fluid model. The lateral momentum 
transfer from the liquid to the gas, expressed in terms of the average 
velocity fluids, was directly inferred from the lift force derived by Auton 
et al. [6] for a single bubble, with the lift coefficient determined in the 
previous section. It can be seen in Fig. 6 that the results obtained compare 
reasonable well with the experimental data, whatever the modeling of the 
Reynolds stress tensor. On the other hand, all attempts made at predicting 
the observed individual trajectories of the deflected bubbles, using the very 
same "average" lift force, hopelessly failed. 

There is no paradox, however, since the void migration process is the 
average result of the statistical behavior of a population of bubbles. As for 
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Fig. 6. Comparison between measured and calculated void 
fraction profiles for different turbulent models. 

the discrepancy concerning the dynamics of a given bubble, it could 
probably be removed if the lift force was expressed in terms of the local and 
instantaneous velocity fields, rather than the average ones. In the case of a 
sudden expansion, however, the very same numerical code gives very poor 
results [10], corroborating our belief that a lot more work remains to be 
done in order to bridge the gap between the ensemble averages occurring 
in the two-fluid model and the physical quantities which naturally appear 
in the Lagrangian of a highly sheared dispersed flow. 

5. FROM LAGRANGIAN TO EULERIAN FORMULATION 

By way of conclusion, it is worthwhile to derive a two-fluid model 
from the Lagrangian description in the extremely crude case of N identical 
nondeformable inclusions of mass m, whose individual motions are mere 
translations. Under such conditions, the characteristic function Xi(x, t) of 
the ith inclusion obeys the following equation: 

- -  + Vi. Vz = 0 ( 4 )  
Ot 

Using Eqs. (1) and (4), one can readily show that 

L ~t  (Zi Vi) ~- ~ "  Zi( V i @  Vi) = Zi ~ (5)  

Summing over all particles, taking ensemble averages--denoted by 
bracketed quantities--and defining the volumetric concentration %, the 
mean velocity Vd of the dispersed phase, and its fluctuation Vi' by 

( f )  ~d ~- Zi ; O~d Vd = Zi Vi ; Vi' = V i -  Vd (6)  
l i 1 
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and the familiar mass and momentum conservation equations of the 
two-fluid model are recovered: 

0~d +~7. (~a Va) = 0 {7) 

z 1 
- z , ( V ;  @ P/)  
Ot i i 

If, for the sake of simplicity, all hydrodynamic forces but for the drag 
are ignored, one may write, at low Reynolds numbers, 

if'i = k[U(Xi, t ) -  Vi(t)] (9) 

where U ( X i ,  t)  is the velocity of the continuous liquid phase at the center 
of mass Xi of the inclusion. Such a force, which is based on the actual local 
and instaneous velocities of both phases, will account for the experimen- 
tally observed strong accelerations of the inclusions. If the topology of the 
continuous phase is defined by its characteristic function Zc, its average 
velocity Vc is given by 

(1 - Pc = <zo t ) )  (10) 

and the right-hand side of Eq. (8) may be shown to have the following 
form: 

N L ~ d ( g c  - -  V d )  "~- - -  Z i [ ~ f ( $ i )  - Vc] ( 1 1 )  
i 1 Z i m / = m  m i 1 

The momentum-interaction term appearing in the two-fluid model can 
accordingly be split into two contributions. The first one is the familiar 
Stokes relationship applied to the average velocity fields, commonly 
employed when closing the two-fluid model. The second one, however, 
which is reminiscent of Simonin's suggestion [-1], is linked to the difference 
between the actual velocity of the continuous phase and its average. It is 
expected to vanish in uniform situations but might contribute significantly 
to the average motion of the dispersed phase in those regions of the flow 
where the distribution of particles is highly nonuniform--such as large- 
scale vortical motions of the continuous phase. 
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